Stanford Study Reveals Brain Mechanism Behind Chronic Pain’s Sapping of Motivation

From Stanford Medicine News Center

Mice suffering chronic pain undergo a change in brain circuitry that makes them less willing to work for a reward, even though they still want it.

Chronic pain is among the most abundant of all medical afflictions in the developed world. It differs from a short-term episode of pain not only in its duration, but also in triggering in its sufferers a psychic exhaustion best described by the question, “Why bother?”

A new study in mice, conducted by investigators at the Stanford University School of Medicine, has identified a set of changes in key parts of the brain that may explain chronic pain’s capacity to stifle motivation. The discovery could lead to entirely new classes of treatment for this damaging psychological consequence of chronic pain.

Many tens of millions of people in the United States suffer persistent pain due to diverse problems including migraines, arthritis, lower back pain, sports injuries, irritable bowel syndrome and shingles. For many of these conditions, there are no good treatments, and a crippling loss of mojo can result.

“With chronic pain, your whole life changes in a way that doesn’t happen with acute pain,” said Robert Malenka, MD, PhD, the Nancy Friend Pritzker Professor in Psychiatry and Behavioral Sciences and the study’s senior author. “Yet this absence of motivation caused by chronic pain, which can continue even when the pain is transiently relieved, has been largely ignored by medical science.”

A series of experiments in mice by Malenka and his colleagues, described in a study published Aug. 1 in Science, showed that persistent pain causes changes in a set of nerve cells in a deep-brain structure known to be important in reward-seeking behavior: the pursuit of goals likely to yield pleasurable results. Malenka’s lab has been studying this brain structure, the nucleus accumbens, for two decades.

“We showed that those brain changes don’t go away when you transiently relieve the mice’s pain,” Malenka said. The experiments also indicated that the mice’s diminished motivation to perform reward-generating tasks didn’t stem from their pain’s rendering them incapable of experiencing pleasure or from any accompanying physical impairment, he said.

Read more on Stanford Neurosciences Institute website.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

where neural understanding interacts with the rest of life

The Center for Compassion and Altruism Research and Education

where neural understanding interacts with the rest of life

Musings on Memory and Aging

where neural understanding interacts with the rest of life

where neural understanding interacts with the rest of life

Stanford Center on Longevity

where neural understanding interacts with the rest of life

where neural understanding interacts with the rest of life

The Beautiful Brain

a website about neuroscience and art that peaked in 2009 but is still going

%d bloggers like this: