Archive

Tag Archives: Stanford

A team of Stanford scientists has developed an entirely non-invasive technique that provides a view of blood flow in the brain. The tool could provide powerful insights into strokes and possibly Alzheimer’s disease.

14149-skullmodel_news

This illustration shows how carbon nanotubes, once injected into the subject, can be fluoresced using near-infrared light in order to visualize the brain vasculature and track cerebral blood flow. Courtesy Dai Lab

Some of the most damaging brain diseases can be traced to irregular blood delivery in the brain. Now, Stanford chemists have employed lasers and carbon nanotubes to capture an unprecedented look at blood flowing through a living brain.

The technique was developed for mice but could one day be applied to humans, potentially providing vital information in the study of stroke and migraines, and perhaps even Alzheimer’s and Parkinson’s diseases. The work is described in the journal Nature Photonics.

Current procedures for exploring the brain in living animals face significant tradeoffs. Surgically removing part of the skull offers a clear view of activity at the cellular level. But the trauma can alter the function or activity of the brain or even stimulate an immune response. Meanwhile, non-invasive techniques such as CT scans or MRI visualize function best at the whole-organ level; they cannot visualize individual vessels or groups of neurons.

Read More

Advertisements

By

Stanford researchers found that walking boosts creative inspiration. They examined creativity levels of people while they walked versus while they sat. A person’s creative output increased by an average of 60 percent when walking.

man walking on path

Many people claim they do their best thinking while walking. A new study finds that walking indeed boosts creative inspiration. Photo by L.A. Cicero

Read More

Erin Digitale, Stanford News (reposted on Essinova Blog, March 1st, 2011)

Pediatric neurologist Michelle Monje led the team that became the first to create an animal model of a rare, fatal brain tumor that strikes young children.

A pediatric brain tumor that causes gruesome suffering is finally yielding its secrets. For the first time, scientists at the Stanford University School of Medicine have cultured human cells from this cancer, Diffuse Intrinsic Pontine Glioma, and used those cells to create an animal model of the disease. Their discoveries will facilitate research on new treatments for DIPG, a tumor of school-aged children that is now almost universally fatal. Read More

where neural understanding interacts with the rest of life

The Center for Compassion and Altruism Research and Education

where neural understanding interacts with the rest of life

Musings on Memory and Aging

where neural understanding interacts with the rest of life

where neural understanding interacts with the rest of life

Stanford Center on Longevity

where neural understanding interacts with the rest of life

where neural understanding interacts with the rest of life

The Beautiful Brain

a website about neuroscience and art that peaked in 2009 but is still going